Установка подготовки газа схема


Установка подготовки газа схема

Описание способов получения и производства промышленных газов (азот, аргон, водород, гелий, кислород, пропан, углекислота).

Получение и производство промышленных газов.

 

В настоящее время основным способом получения атмосферных промышленных газов – кислорода, азота, аргона является разделение воздуха. Различают три способа разделения воздуха — криогенный, адсорбционный и мембранный.

Криогенное разделение воздуха

Атмосферный осушенный воздух представляет собой смесь, содержащую по объему кислород 21 % и азот 78 %, аргон 0,9% и другие инертные газы, углекислый газ, водяной пар и пр. Для получения технически чистых атмосферных газов воздух подвергают глубокому охлаждению и сжижают (температура кипения жидкого воздуха при атмосферном давлении -194,5° С.)

Процесс выглядит так: воздух, засасываемый многоступенчатым компрессором, проходит сначала через воздушный фильтр, где очищается от пыли, проходит влагоотделитель, где отделяется вода, конденсирующаяся при сжатии воздуха, и водяной холодильник, охлаждающий воздух и отнимающий тепло, образующееся при сжатии. Для поглощения углекислоты из воздуха включается аппарат — декарбонизатор, заполняемый водным раствором едкого натра. Полное удаление влаги и углекислоты из воздуха имеет существенное значение, так как замерзающие при низких температурах вода и углекислота забивают трубопроводы и приходится останавливать установку для оттаивания и продувки.

Пройдя осушительную батарею, сжатый воздух поступает в так называемый детандер, где происходит резкое расширение и соответственно его охлаждение и сжижение. Полученный жидкий воздух подвергают дробной перегонке или ректификации в ректификационных колоннах. При постепенном испарении жидкого воздуха сначала выпаривается преимущественно азот, а остающаяся жидкость всё более обогащается кислородом. Повторяя подобный процесс многократно на ректификационных тарелках воздухоразделительных колонн, получают жидкий кислород, азот и аргон нужной чистоты. Возможность успешной ректификации основывается на довольно значительной разности (около 13°) температур кипения жидких азота (-196° С) и кислорода (-183° С). Несколько сложнее отделить аргон от кислорода (-185° С). Далее разделенные газы отводятся для накопления в специальные криогенные емкости, из которых поступают для собственного использования либо на продажу.

Криогенный способ разделения воздуха позволяет получить газы самого высокого качества – кислород до 99.9%, аргон и азот до 99, 9995%. Производительность может составлять до 70000 м.куб./час.

Метод короткоцикловой адсорбции (КЦА).

Криогенное разделение воздуха при всех его качественных параметрах является довольно дорогостоящим способом получения промышленных газов. Адсорбционный метод разделения воздуха, основанный на избирательном поглощении того или иного газа адсорбентами, является некриогенным способом, и широкое применение получил из-за следующих преимуществ:

высокая разделительная способность по адсорбируемым компонентам в зависимости от выбора адсорбента; быстрый пуск и остановка по сравнению с криогенными установками; большая гибкость установок, т.е. возможность быстрого изменения режима работы, производительности и чистоты в зависимости от потребности; автоматическое регулирование режима; возможность дистанционного управления; низкие энергетические затраты по сравнению с криогенными блоками; простое аппаратурное оформление; низкие затраты на обслуживание; низкая стоимость установок по сравнению с криогенными технологиями;

Адсорбционный способ используется для получения азота и кислорода, так как он обеспечивает при низкой себестоимости отличные параметры качества.

Принцип получения азота при помощи КЦА прост, но эффективен. Воздух подается в адсорбер — углеродныемолекулярные сита при повышенном давлении и температуре внешней среды. В ходе процесса кислород (О2) поглощается адсорбентом, в то время как азот (N2) проходит через аппарат. Адсорбент поглощает газ до состояния равновесия между адсорбцией и десорбцией, после чего адсорбент необходимо регенерировать, т.е. удалить с поверхности адсорбента поглощённые компоненты. Это можно сделать либо путём повышения температуры, либо путём сброса давления. Обычно в короткоцикловой адсорбции используют регенерацию посредством сброса давления. Небольшая длительность циклов адсорбции и регенерации, обычно в пределах нескольких минут, и дала собственно название процесса — «короткоцикловая адсорбция». Чистота азота по этой технологии 99,999%.

В установках для производства кислорода используется известный факт, что азот адсорбируетсяалюмосиликатными молекулярными ситами существенно быстрее, чем кислород. Для отделения азота от кислорода воздух сначала сжимают, а затем пропускают через адсорбер, получая на выходе относительно чистый кислород. Чистота кислорода как продукта, получаемого по этой технологии, составляет до 95 %. Основной загрязняющей его примесью является главным образом аргон. Регенерацию адсорбента проводят при атмосферном давлении или вакууме.
Трёхадсорберная система с применением двухступенчатого насоса

Трёхадсорберная система с применением двухступенчатого насоса

Двухадсорберная система с дополнительной буферной емкостью и одноступенчатым насосом

 

Двухадсорберная система с дополнительной буферной емкостью и одноступенчатым насосом

 

Скорости адсорбции азота и кислорода

Скорости адсорбции азота и кислорода

 

Технологическая схема установок КЦА для производства азота из воздуха

Технологическая схема установок КЦА для производства азота из воздуха

Установки короткоцикловой адсорбции обычно полностью собираются и испытываются на заводе-изготовителе, т.е. поступают к потребителю в состоянии полной заводской готовности, что обеспечивает быстрый монтаж, и имеют диапазон производительности от 10 до 6000 нм 3/ч.

Мембранная технология

 

Промышленное использование технологии мембранного разделения газов началось в 70-х годах и произвело настоящую революцию в индустрии разделения газов. Вплоть до сегодняшних дней эта технология активно развивается и получает все большее распространения благодаря своей высокой экономической эффективности. В случаях, когда не требуется очень чистый газ, в основном азот, при сравнительно больших объемах потребления, эта технология практически полностью вытеснила альтернативные способы получения газов — криогенный и адсорбционный. При производстве азота чистоте до 99.9% и производительностью до 5000 нм³/ч мембранные установки оказываются существенно выгоднее остальных. Устройство современных мембранных газоразделительных и воздухоразделительных установок исключительно надежно. В первую очередь это обеспечивается тем, что в них нет никаких подвижных элементов, поэтому механические поломки почти исключены. Современная газоразделительная мембрана, основной элемент установки, представляет собой уже не плоскую мембрану или пленку, а полое волокно. Половолоконная мембрана состоит из пористого полимерного волокна с нанесенным на его внешнюю поверхность газоразделительным слоем. Суть работы мембранной установки заключается в селективной проницаемости материала мембраны различными компонентами газа. Разделение воздуха с использованием селективных мембран основано на том, что молекулы компонентов воздуха имеют разную проницаемость через полимерные мембраны. Воздух фильтруется, сжимается до желаемого давления, осушается и затем подается через мембранный модуль. Более «быстрые» молекулы кислорода и аргона проходят через мембрану и удаляются наружу. Чем через большее количество модулей проходит воздух, тем больше становится концентрация азота N2. Наиболее эффективно по затратам получать азот с содержанием основного вещества 93-99,5%.

Ниже приведены графики по выбору применения тех или иных видов получения промышленных газов в зависимости от объемов потребления и необходимой чистоты.

/technologies/images/membrane/blast_nitrogen.jpg

 

Получение гелия

Гелий — прозрачный газ, без вкуса и запаха, следующий по величине атомного веса после водорода элемент. Он абсолютно инертен, т. е. не вступает ни в какие реакции. Из всех веществ гелий имеет самую низкую температуру кипения -269°С. Жидкий гелий — самая холодная жидкость. «Замерзает» гелий при — 272° С. Эта температура всего на один градус выше температуры абсолютного нуля. В промышленных масштабах гелий можно получать двумя способами – либо из недр земли, либо разделением воздуха. Это газ на Земле встречается мало: 1 м3 воздуха содержит всего 5,2 см3 гелия, т.е. всего 0,00052%., а каждый килограмм земного материала — 0,003 мг гелия. По распространенности же во Вселенной гелий занимает второе место после водорода: на долю гелия приходится около 23% космической массы.

На Земле гелий постоянно образуется при распаде урана, тория и других радиоактивных элементов. Гелий накапливается в свободных газовых скоплениях недр и в нефти; такие месторождения достигают промышленного масштабов. Максимальные концентрации гелия (10-13%) выявлены в свободных газовых скоплениях и газах урановых рудников и (20-25%) в газах, спонтанно выделяющихся из подземных вод. Чем древнее возраст газоносных осадочных пород и чем выше в них содержание радиоактивных элементов, тем больше гелия в составе природных газов.

Добыча гелия в промышленных масштабах производится из природных и нефтяных газов как углеводородного, так и азотного состава. По качеству сырья гелиевые месторождения подразделяются: на богатые (содержание Не > 0,5% по объему); рядовые (0,10-0,50) и бедные (<0,10). Месторождения таких газов имеются в России, США, Канаде, Китае, Алжире, Польше и Катаре.

Для отделения от прочих газов используют исключительную летучесть гелия, связанную с его низкой температурой сжижения. После того как все прочие компоненты природного газа сконденсируются при глубоком охлаждении, газообразный гелий откачивают. Затем его очищают от примесей. Чистота заводского гелия достигает 99,995%. Крупнейший производитель гелия в Европе – Оренбургский гелиевый завод ( 10 млн литров жидкого гелий в год).

При получении гелия путем разделения воздуха крупные воздухоразделительные установки (1000 – 3000 т кислорода в день ) оборудуют специальными концентраторами и аппаратами колонного типа, которые выделяют и накапливают смеси криптона и ксенона в кислороде, неона и гелия в азоте. Неочищенные смеси затем перерабатываются для получения чистого продукта. Чистота гелия может доходить до 99,9999%. Одним из крупнейших производителей гелия из воздуха является компания «Айсблик».

Получение углекислого газа

Различают следующие промышленные способы получения углекислого газа:

— путем рекуперации двуокиси углерода из газов брожения на спиртовых и пивоваренных заводах;
— путем рекуперации двуокиси углерода из отбросных газов различных производственных процессов;

— путем добычи из подземных естественных источников;
— путем производства двуокиси углерода из дымовых газов и продуктов сгорания;
— путем производства двуокиси углерода методом прямого сжигания газообразного или жидкого топлива.

Соответственно, в зависимости от концентрации углекислого газа источники его условно можно разделить на три группы.

Первую группу составляют источники сырья, из которых можно производить чистый диоксид углерода без специального оборудования для повышения его концентрации. В эту группу входят:

а) газы химических и нефтехимических производств (производства аммиака, водорода и др. продуктов) с содержанием 98-99 % СО2; б) газы спиртового брожения на пивоваренных, спиртовых и гидролизных заводах с 98-99 % СО2; в) газы из естественных источников с 92-99 % СО2.

Вторую группу формируют источники сырья, использование которых обеспечивает получение чистого диоксида углерода методом фракционной конденсации.

К этой группе относят газы некоторых химических производств с содержанием 80-95 % СО2.

Установки рекуперации CO2 предназначены для извлечения углекислоты из газов первой и второй группы. Газы, получаемые в процессах брожения при производстве спирта или пива, представляют собой практически чистый углекислый газ, содержащий водяные пары и следы органических соединений (сернистый ангидрид, сероводород, сивушные масла и альдегиды), легко отмываемые водой. Содержание двуокиси углерода в т.н. экспанзерных газах зависит от типа технологических процессов химических производств и может составлять до 99,9 %. Остальной объем занимают пары воды и низкокипящие примеси, преимущественно водород. Для доведения двуокиси углерода до пищевого качества (99,995 % СО2 и 0,0005% О2) эти установки оснащаются системой ректификационной (дистилляционной) очистки.

В третью группу включены источники сырья, использование которых даёт возможность производить чистый диоксид углерода только с помощью специального оборудования. В эту группу входят источники:

а) состоящие в основном из азота и диоксида углерода (продукты сгорания углеродсодержащих веществ, например, природного газа, жидкого топлива, кокса в котельных, газо-поршневых и газотурбинных установках с содержанием 8-20 % СО2; от-

ходящие газы известковых и цементных заводов с 30-40 % СО2; колошниковые газы доменных печей с 21-23 % СО2);

б) состоящие в основном из метана и диоксида углерода и содержащие значительные примеси других газов (биогаз и свалочный газ из биореакторов с 30-45 % СО2; сопутствующие газы при добыче природного газа и нефти с содержанием 20-40 % СО2).

При использовании источников сырья третьей группы чаще всего применяются углекислотные станции абсорбционно-десорбционного типа с жидкими химическими абсорбентами. Это — один из основных промышленных способов получения чистого СО2. Наиболее распространенным сырьем для производства двуокиси углерода являются дымовые газы, а природный газ считается оптимальным источником сырья. При сжигании природного газа в дыме отсутствуют соединения серы и механические примеси.

Типичная схема получения СО2 выглядит так: обогащенный СО2 пар поступает в скрубберы, где оделяются механические примеси и тяжелые углеводороды. Газ сжимается и прогоняется через очиститель, в котором удаляются влага и нежелательные газы.

Произведенная двуокись углерода может накапливаться в резервуарах длительного хранения, подаваться на станцию зарядки баллонов и огнетушителей, транспортные цистерны, установки для производства «сухого» льда, непосредственно на производственные газирующие линии.

Получение водорода

Существует две основные схемы получения водорода.

Электролизные заводы. Для небольших потребителей водорода предлагаются электролизеры производительностью от 0,5 до 1000 м.куб./час. Чистота 99,9% и выше может удовлетворить требованиям предприятий пищевой, химической отраслей, электроники. Производство технического водорода путем электролиза включает в себя следующие основные последовательно реализуемые стадии: электролитическое разложение воды на водород и кислород 2Н2О→2Н2+О2; каталитическая очистка полученного водорода от кислорода; его сжатие в поршневых компрессорах; адсорбционная осушка; заполнение в баллоны или контейнеры.

Паровой реформинг. Используя источник углеводородов и процесс реформинга, можно произвести водород в малых, средних, больших объемах и того качества, которое нужно потребителю. Обычно предлагаются установки от 100 до 5000 м.куб./час, нефтеперерабатывающие заводы используют установки производительность более 20000 м.куб./час.Процесс выглядит так: углеводороды ( метанол, пропан, природный газ, нефть ), используемые в качестве топлива, смешиваются в процессным паром, нагреваются до 480 град.С и разделяются в реакторе, используя основанный на никеле катализатор, по простой формуле СН4+Н2О+230 кДж=СО+3Н2

Содержание водорода в дальнейшем увеличивают на железном катализаторе, происходит реакция СО и Н2О, и в результате получается Н2 и СО2. Дальнейшие ступени процесса удаляют конденсат, уменьшается температура и давление, а дальше водород очищается в адсорбционной установке. После нее водород имеет чистоту 99,9995 и давление 15-30 бар.

Водородная адсорбционная установка интегрируется в существующую систему контроля и полностью автоматизируется.

Получение ацетилена

Ацетилен впервые был получен в 1836 году Эдмондом Дэви путем обработки водой карбида калия К2С2 и был назван так химиком Бертло в 1860 г.

Промышленное получение ацетилена началось с момента массового производства карбида кальция. В свою очередь карбид кальция получают путем спекания известняка и кокса (угля) СаО+3С=СаС2+СО. В Украине сколько-нибудь значительного производства карбида кальция нет.

При обработке карбида кальция водой и образуется ацетилен:

СаС2+2Н2О=С2Н2+Са(ОН)2

Большая часть ацетилена, производимого в Украине, получается из карбида кальция. Для этого используются специальные промышленные генераторы, в которых ацетилен проходит очистку от примесей серы, аммиака и фосфора, от влаги, и далее компрессорами закачивается в баллоны.

Для бытового использования применяются небольшие переносные генераторы, но ацетилен, получаемый в них, обычно влажный и с примесями. Кроме того, невозможно остановить процесс образования ацетилена, что может быть неудобно для небольших работ. В морозы также проблематично использование малых генераторов из-за опасности замерзания воды.

Второй способ получения ацетилена – окислительный пиролиз метана и других углеводородов по формуле 2СН4→С2Н2+3Н2, осуществляемый при повышенной температуре 1200-1500 град. с последующим быстрым охлаждением. Ацетилен здесь является промежуточным продуктом при дальнейшем производстве продуктов органического синтеза. Способ пиролиза экономически невыгоден только для получения ацетилена, поэтому применяется на заводах, производящих его дальнейшую переработку в синтетический каучук, винилацетат, винилхлорид, этилен, бутадиен, стирол и другие продукты. В Украине это «Северодонецкий Азот». 

Получение пропана.

Под пропаном обычно понимают сжиженную смесь углеводородов, куда входят следующие газы:

Этан – С2Н6 — газ, по плотности близкий к воздуху. Входит в состав сжиженных газов в незначительном количестве. Самая главная причина ограничения его содержания в том, что при температуре 45°С этан не может находится в сжиженном состоянии. При 30 °С упругость его паров достигает 4,8 МПа, тогда как рабочее давления надземных систем газоснабжения сжиженным газом составляет 1,6 МПа, а подземных – 1,0МПа. В то же время незначительное количество этана в пропан-бутановой смеси повышает общее давление насыщенных паров газовой смеси, что обеспечивает в зимнее время избыточное давление, необходимое для нормального газоснабжения.
Пропан – С3Н8 — тяжелый газ (плотность по воздуху 1,52). Технический пропан является основной составляющей сжиженных газов, его процентное соотношение в зимней смеси должно быть не менее 75%. Температура кипения – 42,1°С.

Бутан – С4Н10 — тяжелый газ (плотность по воздуху 2,06). Температура кипения –0,5°С.
Пентан – С5Н12 — тяжелый газ (плотность по воздуху 2,49). Температура кипения +36°С. Содержание в смеси 1-2% от обьема.

Сжиженный газ получают обычно двумя способами – при переработке природного газа на газоперерабатывающих заводах ГПЗ и на нефтеперерабатывающих заводах НПЗ, что определяет доступную цену для потребителя.
Технологическая цепочка производства сжиженных газов начинается с добычи «сырой» нефти или «влажного» природного газа и заканчивается хранением жидких пропана и бутана, полностью свободных от легких газов, тяжелой нефти и очищенных от следов сернистых соединений и воды.
На газовых месторождениях добыча богатого метаном природного газа нередко сопровождается выходом небольших количеств смеси тяжелых углеводородов: от этана и основных компонентов сжиженного газа до соединений компонентов дистиллята («естественного бензина»). Если они присутствуют в значительных количествах, то сжиженные газы и дистиллят удаляют из природного газа во избежание технологических осложнений от конденсата при компримировании газа перед подачей его в трубопровод, а также для получения необходимых химических веществ или дополнительного топлива. Полученная смесь сжиженных газов и дистиллята имеет невысокое качество, но тем не менее имеет спрос в силу невысокой цены.

При добыче нефти непосредственно на месте добычи «сырая» нефть стабилизируется для подготовки ее к дальнейшей транспортировке по трубопроводам или в танкерах к месту потребления. Степень стабилизации, эффективность которой зависит от условий на головке скважины (температура и давление), в свою очередь, определяет количество удаляемых легких газов. Эти газы иногда сжигаются, но в настоящее время все чаще используются как дополнительная продукция, и называется «попутным природным газом». Количество сжиженных газов, остающихся в «сырой» нефти, зависит от степени стабилизации на месте ее добычи. Некоторые сорта нефти перед транспортировкой иногда могут быть специально дополнены сжиженным газом. Содержащиеся в нефти, поступившей на нефтеочистительное предприятие, сжиженные газы улавливают в процессе дистилляции. Их выход колеблется от 2 до 3 % от объема перерабатываемой нефти. Полученные при фракционной разгонке сжиженные газы подвергаются последующей конверсии, которая осуществляется, прежде всего, для увеличения выхода и повышения качества бензина, но также она отделяет примеси из самого сжиженного газа.

Таким образом, предпочтительнее использовать сжиженный газ, полученный в процессе переработки нефти, так как он имеет более стабильный состав, в нем отсутствуют влага, примеси азота, углекислого газа, которые обычно имеются в сжиженном газе, получаемом на газовых месторождениях.




Установка подготовки газа схема

Установка подготовки газа схема

Установка подготовки газа схема

Установка подготовки газа схема

Установка подготовки газа схема

Установка подготовки газа схема

Установка подготовки газа схема

Установка подготовки газа схема

Похожие новости: